DocumentCode :
715018
Title :
Random matrix theory inspired passive bistatic radar detection of low-rank signals
Author :
Gogineni, Sandeep ; Setlur, Pawan ; Rangaswamy, Muralidhar ; Nadakuditi, Raj Rao
Author_Institution :
Wright State Res. Inst., Beavercreek, OH, USA
fYear :
2015
fDate :
10-15 May 2015
Firstpage :
1656
Lastpage :
1659
Abstract :
For passive bistatic radar with a noisy reference signal, we propose a singular value decomposition (SVD) and Eigen detector that significantly outperforms the conventional cross-correlation detector. We consider the scenario when the signals of opportunity across several independent snapshots/pulses span a low-rank signal space. The target reflectivity is assumed to change independently from one pulse to another within a processing interval. We demonstrate this performance improvement through extensive numerical simulations across various surveillance and reference signal-to-noise ratio (SNR) regimes.
Keywords :
matrix algebra; passive radar; radar signal processing; singular value decomposition; SVD; eigen detector; low-rank signal space; low-rank signals; numerical simulations; passive bistatic radar detection; random matrix theory; singular value decomposition; target reflectivity; Correlation; Covariance matrices; Detectors; Noise measurement; Passive radar; Signal to noise ratio; Surveillance; Detection; Kolmogorov-Smirnov; Passive radar; Phase transition; Random matrix theory; Singular value decomposition;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Radar Conference (RadarCon), 2015 IEEE
Conference_Location :
Arlington, VA
Print_ISBN :
978-1-4799-8231-8
Type :
conf
DOI :
10.1109/RADAR.2015.7131264
Filename :
7131264
Link To Document :
بازگشت