Title :
Efficient, verifiable, secure, and privacy-friendly computations for the smart grid
Author :
Borges, Fabio ; Volk, Florian ; Muhlhauser, Max
Author_Institution :
Tech. Univ. Darmstadt/CASED, Darmstadt, Germany
Abstract :
In this paper, we present a privacy-preserving protocol between an energy provider and smart meters. Many details about the life of customers can be inferred from fine-grained information on their energy consumption. Different from other state-of-the-art protocols, the presented protocol addresses this issue as well as the integrity of electricity bills. Therefore, our protocol provides secure aggregation of measured consumption per round of measurement and verifiable billing after any period. Aggregation of measured consumption ensures that energy suppliers know the consolidated consumption of their customers. Verifiable billing ensures fairness for customers and their energy supplier. We adapt a homomorphic encryption scheme based on elliptic curve cryptography to efficiently protect the data series of measurements that are collected by smart meters. Moreover, energy suppliers can detect and locate energy loss or fraud in the power grid while retaining the privacy of all consumers.
Keywords :
energy consumption; public key cryptography; smart meters; smart power grids; elliptic curve cryptography; energy consumption; homomorphic encryption scheme; privacy-friendly computations; privacy-preserving protocol; smart grid; smart meters; verifiable billing; Elliptic curve cryptography; Energy measurement; Phasor measurement units; Protocols; Smart grids; Smart meters; Data Series; Elliptic Curve Cryptography; Homomorphic Encryption; Performance; Privacy; Security; Smart Grid;
Conference_Titel :
Innovative Smart Grid Technologies Conference (ISGT), 2015 IEEE Power & Energy Society
Conference_Location :
Washington, DC
DOI :
10.1109/ISGT.2015.7131862