DocumentCode :
716468
Title :
The planner ensemble: Motion planning by executing diverse algorithms
Author :
Choudhury, Sanjiban ; Arora, Sankalp ; Scherer, Sebastian
Author_Institution :
Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
fYear :
2015
fDate :
26-30 May 2015
Firstpage :
2389
Lastpage :
2395
Abstract :
Autonomous systems that navigate in unknown environments encounter a variety of planning problems. The success of any one particular planning strategy depends on the validity of assumptions it leverages about the structure of the problem, e.g., Is the cost map locally convex? Does the feasible state space have good connectivity? We address the problem of determining suitable motion planning strategies that can work on a diverse set of applications. We have developed a planning system that does this by running competing planners in parallel. In this paper, we present an approach that constructs a planner ensemble - a set of complementary planners that lever-age a diverse set of assumptions. Our approach optimizes the submodular selection criteria with a greedy approach and lazy evaluation. We seed our selection with learnt priors on planner performance, thus allowing us to solve new applications without evaluating every planner on that application. We present results in simulation where the selected ensemble outperforms the best single planner and does almost as well as an off-line planner. We also present results from an autonomous helicopter that has flown missions several kilometers long at speeds of up to 56m/s which involved avoiding unmapped mountains, no-fly zones and landing in cluttered areas with trees and buildings. This work opens the door on the more general problem of adaptive motion planning.
Keywords :
adaptive control; aircraft control; autonomous aerial vehicles; helicopters; mobile robots; path planning; adaptive motion planning; autonomous helicopter; planner ensemble; Cities and towns; Helicopters; Lattices; Optimization; Planning; Robots; Trajectory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation (ICRA), 2015 IEEE International Conference on
Conference_Location :
Seattle, WA
Type :
conf
DOI :
10.1109/ICRA.2015.7139517
Filename :
7139517
Link To Document :
بازگشت