Title :
Asymptotically-optimal Motion Planning using lower bounds on cost
Author :
Salzman, Oren ; Halperin, Dan
Author_Institution :
Blavatnik Sch. of Comput. Sci., Tel-Aviv Univ., Tel-Aviv, Israel
Abstract :
Many path-finding algorithms on graphs such as A* are sped up by using a heuristic function that gives lower bounds on the cost to reach the goal. Aiming to apply similar techniques to speed up sampling-based motion-planning algorithms, we use effective lower bounds on the cost between configurations to tightly estimate the cost-to-go. We then use these estimates in an anytime asymptotically-optimal algorithm which we call Motion Planning using Lower Bounds (MPLB). MPLB is based on the Fast Marching Trees (FMT*) algorithm [1] recently presented by Janson and Pavone. An advantage of our approach is that in many cases (especially as the number of samples grows) the weight of collision detection in the computation is almost negligible compared to the weight of nearest-neighbor queries. We prove that MPLB performs no more collision-detection calls than an anytime version of FMT*. Additionally, we demonstrate in simulations that for certain scenarios, the algorithmic tools presented here enable efficiently producing low-cost paths while spending only a small fraction of the running time on collision detection.
Keywords :
path planning; robots; trees (mathematics); FMT* algorithm; MPLB; asymptotically-optimal motion planning; collision detection; fast marching trees algorithm; heuristic function; low-cost paths; motion planning using lower bounds; nearest-neighbor queries; path-finding algorithms; sampling-based motion-planning algorithms; Algorithm design and analysis; Collision avoidance; Estimation; Heuristic algorithms; Motion-planning; Robots;
Conference_Titel :
Robotics and Automation (ICRA), 2015 IEEE International Conference on
Conference_Location :
Seattle, WA
DOI :
10.1109/ICRA.2015.7139773