DocumentCode :
719912
Title :
Spectral properties of random matrices for stochastic block model
Author :
Avrachenkov, Konstantin ; Cottatellucci, Laura ; Kadavankandy, Arun
Author_Institution :
INRIA, Sophia Antipolis, France
fYear :
2015
fDate :
25-29 May 2015
Firstpage :
537
Lastpage :
544
Abstract :
We consider an extension of Erdös-Rényi graph known in literature as Stochastic Block Model (SBM). We analyze the limiting empirical distribution of the eigenvalues of the adjacency matrix of SBM. We derive a fixed point equation for the Stieltjes transform of the limiting eigenvalue empirical distribution function (e.d.f.), concentration results on both the support of the limiting e.s.f. and the extremal eigenvalues outside the support of the limiting e.d.f. Additionally, we derive analogous results for the normalized Laplacian matrix and discuss potential applications of the general results in epidemics and random walks.
Keywords :
Laplace equations; eigenvalues and eigenfunctions; matrix algebra; spectral analysis; stochastic processes; Erdos-Renyi graph; Stieltjes transform; eigenvalue empirical distribution function; fixed point equation; normalized Laplacian matrix; random matrices; spectral properties; stochastic block model; Communities; Complex networks; Eigenvalues and eigenfunctions; Erbium; Laplace equations; Limiting; Symmetric matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2015 13th International Symposium on
Conference_Location :
Mumbai
Type :
conf
DOI :
10.1109/WIOPT.2015.7151116
Filename :
7151116
Link To Document :
بازگشت