DocumentCode :
720034
Title :
Parameter identification of thermoeletric modules using particle swarm optimization
Author :
Ojeda G, Daniel R. ; de Almeida, Luiz A. L. ; Vilcanqui, Omar A. C.
Author_Institution :
Dept. of Instrum., Univ. Fed. do ABC, Sao Paulo, Brazil
fYear :
2015
fDate :
11-14 May 2015
Firstpage :
812
Lastpage :
817
Abstract :
This paper presents a methodology to estimate thermoelectric module (TEM) internal parameters based on particle swarm optimization (PSO) algorithm. To obtain the correct TEM representation, it is necessary a proper model identification procedure to represent the TEM operation, both in DC and other relevant frequencies. Classical methods for linear parameter estimation are not suitable for the nonlinear TEM characteristics of the proposed model. We devise a model with twenty-one parameters, which represent parts of the two TEMs employed, including top, lower and middle layers and heat-sinks. The TEM is excited using an electrical current signal with power spectral density of a white noise, and the temperature response is adopted as output for the PSO algorithm to make the estimation. For numerical stability and proper estimation, the white noise excitation is filtered before, to obtain a dynamically persistent signal with high and low frequencies components. Simulation results show the effectiveness of the PSO in TEM parameters estimation.
Keywords :
parameter estimation; particle swarm optimisation; thermoelectric conversion; PSO algorithm; TEM parameters estimation; electrical current signal; linear parameter estimation; parameter identification; particle swarm optimization; power spectral density; thermoeletric modules; white noise; Integrated circuit modeling; Mathematical model; Parameter estimation; Resistance heating; Thermal conductivity;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Instrumentation and Measurement Technology Conference (I2MTC), 2015 IEEE International
Conference_Location :
Pisa
Type :
conf
DOI :
10.1109/I2MTC.2015.7151373
Filename :
7151373
Link To Document :
بازگشت