• DocumentCode
    72274
  • Title

    Workload Analysis, Implications, and Optimization on a Production Hadoop Cluster: A Case Study on Taobao

  • Author

    Zujie Ren ; Jian Wan ; Weisong Shi ; Xianghua Xu ; Min Zhou

  • Author_Institution
    Sch. of Comput., Sci. & Technol., Hangzhou Dianzi Univ., Hangzhou, China
  • Volume
    7
  • Issue
    2
  • fYear
    2014
  • fDate
    April-June 2014
  • Firstpage
    307
  • Lastpage
    321
  • Abstract
    Understanding the characteristics of MapReduce workloads in a Hadoop cluster is the key to making optimal configuration decisions and improving the system efficiency and throughput. However, workload analysis on a Hadoop cluster, particularly in a large-scale e-commerce production environment, has not been well studied yet. In this paper, we performed a comprehensive workload analysis using the trace collected from a 2000-node Hadoop cluster at Taobao, which is the biggest online e-commerce enterprise in Asia, ranked 10th in the world as reported by Alexa. The results of the workload analysis are representative and generally consistent with the data warehouses for e-commerce web sites, which can help researchers and engineers understand the workload characteristics of Hadoop in their production environments. Based on the observations and implications derived from the trace, we designed a workload generator Ankus, to expedite the performance evaluation and debugging of new mechanisms. Ankus supports synthesizing an e-commerce style MapReduce workload at a low cost. Furthermore, we proposed and implemented a job scheduling algorithm, Fair4S , which is designed to be biased towards small jobs. Small jobs account for the majority of the workload, and most of them require instant and interactive responses, which is an important phenomenon at production Hadoop systems. The inefficiency of Hadoop fair scheduler for handling small jobs motivates us to design the Fair4S, which introduces pool weights and extends job priorities to guarantee the rapid responses for small jobs. Experimental evaluation verified that the Fair4S accelerates the average waiting times of small jobs by a factor of 7 compared with the fair scheduler.
  • Keywords
    Web sites; automatic programming; data warehouses; decision making; distributed programming; electronic commerce; pattern clustering; program debugging; program diagnostics; software performance evaluation; Ankus workload generator; Asia; Fair4S job scheduling algorithm; Hadoop fair scheduler; MapReduce workload characteristics; Taobao; comprehensive workload analysis; data warehouses; e-commerce Web sites; large-scale e-commerce production environment; online e-commerce enterprise; optimal configuration decision making; performance evaluation; production Hadoop cluster; system efficiency; Distribution functions; Generators; Log-normal distribution; Production; Resource management; Standards; Hadoop; MapReduce; job scheduler; workload analysis; workload synthesis;
  • fLanguage
    English
  • Journal_Title
    Services Computing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1939-1374
  • Type

    jour

  • DOI
    10.1109/TSC.2013.40
  • Filename
    6575074