• DocumentCode
    724093
  • Title

    Optimization of sensorless induction motor speed regulation system based on Quantum Genetic Algorithm

  • Author

    Gu Meihua ; Xu Haifeng ; Lin Jinxing

  • Author_Institution
    Inst. of Autom., Nanjing Univ. of Posts & Telecommun., Nanjing, China
  • fYear
    2015
  • fDate
    23-25 May 2015
  • Firstpage
    1784
  • Lastpage
    1789
  • Abstract
    There are four PI controllers in induction motor vector control system when identifying motor speed using MRAS. Parameter tuning of PI controllers will influence system performance directly. To overcome the difficulty of simultaneous parameter tuning for the PI controllers, Quantum Genetic Algorithm (QGA) was used to optimize PI parameters in each loop. A fitness function is designed in this paper as the individual assessment index of Quantum Genetic Algorithm. The fitness function can evaluate system dynamic performance and restrict output amplitude of each PI controller. Simulation results based on MATLAB platform show that Quantum Genetic Algorithm has the advantages of rich population diversity and fast convergence speed, and it avoids the shortcomings of premature convergence and poor local convergence. And the dynamic performance of the induction motor vector control system is improved. by optimizing PI controller parameters using quantum genetic algorithm.
  • Keywords
    PI control; genetic algorithms; induction motors; machine vector control; sensorless machine control; velocity control; MATLAB platform; MRAS; PI controller parameter optimization; PI controllers; PI parameter optimization; QGA; convergence speed; fitness function design; individual assessment index; induction motor vector control system; motor speed identification; quantum genetic algorithm; sensorless induction motor speed regulation system optimization; simultaneous parameter tuning; system dynamic performance evaluation; Convergence; Electronic mail; Genetic algorithms; Induction motors; MATLAB; Optimization; Tuning; Optimization; PI Regulator; Quantum Genetic Algorithm; Simultaneous Parameter Tuning;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control and Decision Conference (CCDC), 2015 27th Chinese
  • Conference_Location
    Qingdao
  • Print_ISBN
    978-1-4799-7016-2
  • Type

    conf

  • DOI
    10.1109/CCDC.2015.7162208
  • Filename
    7162208