DocumentCode :
724413
Title :
Improved method of quantitative steady-state security assessment based on fast elimination of redundant transmission capacity constraints
Author :
Xuan Li ; Qiaozhu Zhai ; Wei Yuan ; Jiebing Liu
Author_Institution :
MOE KLINNS Lab., Xi´an Jiaotong Univ., Xi´an, China
fYear :
2015
fDate :
23-25 May 2015
Firstpage :
4242
Lastpage :
4246
Abstract :
Steady-state security analysis is of great importance to power systems. Steady-state security region (SSR) is a region-wise method that could improve the efficiency of steady-state security analysis. Based on SSR, steady-state security distance (SSD) was proposed in literature and SSD provides a quantitative tool for security assessment on a current operation point (OP) or operational state. However, a large scale optimization problem with many constraints must be solved when calculating SSD. In this paper, an improved method for calculating SSD is presented based on fast elimination of redundant transmission capacity constraints. The main idea is to use an analytic method instead of solving an optimization problem to get an over estimation on the maximal power flow on each transmission line, and then compare the result with the line capacity to identify whether the constraint is redundant. By using this method, the problem for calculating SSD is greatly simplified. Numerical tests are performed and the results are satisfactory.
Keywords :
linear programming; power system security; fast elimination; maximal power flow; quantitative steady-state security assessment; redundant transmission capacity constraints; steady-state security distance; Generators; Load flow; Optimization; Power transmission lines; Security; Steady-state; Linear Programming; Redundant Constraints; Steady-State Security Distance; Steady-State Security Region;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control and Decision Conference (CCDC), 2015 27th Chinese
Conference_Location :
Qingdao
Print_ISBN :
978-1-4799-7016-2
Type :
conf
DOI :
10.1109/CCDC.2015.7162675
Filename :
7162675
Link To Document :
بازگشت