Title :
Automatic polyp detection in colonoscopy videos using an ensemble of convolutional neural networks
Author :
Tajbakhsh, Nima ; Gurudu, Suryakanth R. ; Jianming Liang
Author_Institution :
Dept. of Biomed. Inf., Arizona State Univ., Tempe, AZ, USA
Abstract :
Computer-aided polyp detection in colonoscopy videos has been the subject of research for over the past decade. However, despite significant advances, automatic polyp detection is still an unsolved problem. In this paper, we propose a new polyp detection method based on a unique 3-way image presentation and convolutional neural networks. Our method learns a variety of polyp features such as color, texture, shape, and temporal information in multiple scales, enabling a more accurate polyp localization. Given a polyp candidate, a set of convolution neural networks - each specialized in one type of features - are applied in the vicinity of the candidate and then their results are aggregated to either accept or reject the candidate. Our experimental results based on our collection of videos, which to our knowledge is the largest annotated polyp database, shows a remarkable performance improvement over the state-of-the-art, significantly reducing the number of false positives in nearly all operating points. In addition, we propose a new performance curve, demonstrating that our new method significantly decreases polyp detection latency, which is defined as the time from the first appearance of a polyp in the video to the time of its first detection by our method.
Keywords :
biological tissues; biomedical optical imaging; image colour analysis; image texture; medical image processing; neural nets; object detection; video signal processing; 3-way image presentation; automatic polyp detection; colonoscopy videos; computer-aided polyp detection; convolutional neural networks; false positives; performance curve; polyp color; polyp database; polyp detection latency; polyp localization; polyp shape; polyp texture; temporal information; Colonoscopy; Convolution; Image color analysis; Neural networks; Shape; Training; Videos;
Conference_Titel :
Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium on
Conference_Location :
New York, NY
DOI :
10.1109/ISBI.2015.7163821