• DocumentCode
    724898
  • Title

    Multiscale partial volume estimation for segmentation of white matter lesions using flair MRI

  • Author

    Khademi, April ; Moody, Alan R.

  • fYear
    2015
  • fDate
    16-19 April 2015
  • Firstpage
    568
  • Lastpage
    571
  • Abstract
    For robust segmentation of white matter lesions (WML), a partial volume fraction (PVF) estimation approach was previously developed for FLAIR MRI that does not depend on predetermined intensity distribution models or multispectral scans. Instead the PV fraction was estimated directly from each FLAIR MRI using an adaptively defined global edge map that exploits a novel relationship between edge content and PVA. Although promising, predefined noise filter parameters were needed, and the edge metric is computed on a single scale which limits wide-scale implementations. To handle these challenges, this work defines a novel multiscale PVF estimation approach that is based on scale space derivatives. The result is a scale-invariant representation of edge content which is used to estimate a multiscale (scale-invariant) PV fraction. Validation results show the method is performing better than the previous version.
  • Keywords
    biomedical MRI; image segmentation; medical image processing; FLAIR MRI; edge content scale-invariant representation; edge metrics; global edge map; multiscale PV fraction; multiscale partial volume estimation; multispectral scan; noise filter parameter; partial volume fraction estimation; scale space derivative; white matter lesion segmentation; Image edge detection; Image segmentation; Lesions; Magnetic resonance imaging; Noise; Volume measurement; FLAIR; MRI; WML; partial volume;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium on
  • Conference_Location
    New York, NY
  • Type

    conf

  • DOI
    10.1109/ISBI.2015.7163937
  • Filename
    7163937