DocumentCode :
727200
Title :
Live demonstration: Real-time event-driven object recognition on SpiNNaker
Author :
Orchard, Garrick ; Lagorce, Xavier ; Posch, Christoph ; Furber, Steve ; Benosman, Ryad ; Galluppi, Francesco
Author_Institution :
Singapore Inst. for Neurotechnology (SINAPSE), Nat. Univ. of Singapore, Singapore, Singapore
fYear :
2015
fDate :
24-27 May 2015
Firstpage :
1903
Lastpage :
1903
Abstract :
This live demonstration shows real-time visual object recognition based on a spiking neural network adaptation of the HMAX model running on a purely event-based computational hardware platform. Visual input to the system is provided by an ATIS spiking silicon retina sensor. A SpiNNaker board processes the event-encoded visual information from the scene. Using a Leaky Integrate-and-Fire (LIF) neuron model implemented on SpiNNaker, an event-driven, multi-layer network is created that performs real-time orientation extraction and recombination. In this demonstration, the network will be tuned to recognize complex objects such as printed characters.
Keywords :
elemental semiconductors; neural nets; object recognition; silicon; ATIS spiking silicon retina sensor; HMAX model; Si; SpiNNaker; computational hardware platform; event-encoded visual information; leaky integrate-and-fire neuron model; live demonstration; multi-layer network; neural network; real-time event-driven object recognition; real-time visual object recognition; Adaptation models; Computational modeling; Data visualization; Neurons; Object recognition; Real-time systems; Visualization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems (ISCAS), 2015 IEEE International Symposium on
Conference_Location :
Lisbon
Type :
conf
DOI :
10.1109/ISCAS.2015.7169036
Filename :
7169036
Link To Document :
بازگشت