• DocumentCode
    729402
  • Title

    Context-sensitive text mining with fitness leveling Genetic Algorithm

  • Author

    Huk, Maciej ; Kwiatkowski, Jan ; Konieczny, Dariusz ; Kedziora, Michal ; Mizera-Pietraszko, Jolanta

  • Author_Institution
    Dept. of Comput. Sci., Wroclaw Univ. of Technol., Wroclaw, Poland
  • fYear
    2015
  • fDate
    24-26 June 2015
  • Firstpage
    342
  • Lastpage
    347
  • Abstract
    Contextual processing is a great challenge for information retrieval study - the most approved techniques include scanning content of HTML web pages, user supported metadata analysis, automatic inference grounded on knowledge base, or content-oriented digital documents analysis. We propose a meta-heuristic by making use of Genetic Algorithms for Contextual Search (GACS) built on genetic programming (GP) and custom fitness leveling function to optimize contextual queries in exact search that represents unstructured phrases generated by the user. Our findings show that the queries built with GACS can significantly optimize the retrieval process.
  • Keywords
    data mining; genetic algorithms; query processing; text analysis; GACS; HTML Web pages; automatic inference; content-oriented digital documents analysis; context-sensitive text mining; contextual processing; contextual queries; custom fitness leveling function; fitness leveling genetic algorithm; genetic algorithms for contextual search; genetic programming; information retrieval; knowledge base; meta-heuristic; retrieval process; user supported metadata analysis; Context; Convergence; Correlation; Data mining; Genetic algorithms; Sociology; Data mining; contextual search; fitness leveling; genetic programming; text retrieval;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Cybernetics (CYBCONF), 2015 IEEE 2nd International Conference on
  • Conference_Location
    Gdynia
  • Print_ISBN
    978-1-4799-8320-9
  • Type

    conf

  • DOI
    10.1109/CYBConf.2015.7175957
  • Filename
    7175957