Title :
An Agent-Based Approach to Virtual Power Plants of Wind Power Generators and Electric Vehicles
Author :
Vasirani, Matteo ; Kota, Ramachandra ; Cavalcante, R.L.G. ; Ossowski, Sascha ; Jennings, Nicholas R.
Author_Institution :
Distrib. Inf. Syst. Lab., EPFL, Lausanne, Switzerland
Abstract :
Wind power is gaining in significance as an important renewable source of clean energy. However, due to their inherent uncertainty, wind generators are often unable to participate in the forward electricity markets like the more predictable and controllable conventional generators. Given this, virtual power plants (VPPs) are being advocated as a solution for increasing the reliability of such intermittent renewable sources. In this paper, we take this idea further by considering VPPs as coalitions of wind generators and electric vehicles, where wind generators seek to use electric vehicles (EVs) as a storage medium to overcome the vagaries of generation. Using electric vehicles in this manner has the advantage that, since the number of EVs is increasing rapidly, no initial investment in dedicated storage is needed. In more detail, we first formally model the VPP and then, through an operational model based on linear programming, we show how the supply to the Grid and storage in the EV batteries can be scheduled to increase the profit of the VPP, while also paying for the storage using a novel scheme. The feasibility of our approach is examined through a realistic case-study, using real wind power generation data, corresponding electricity market prices and electric vehicles´ characteristics.
Keywords :
electric vehicles; linear programming; power generation reliability; power markets; secondary cells; wind power plants; EV batteries; VPP; electric vehicles; electricity markets; intermittent renewable sources; linear programming; reliability; virtual power plants; wind power generators; Batteries; Electric vehicles; Electricity; Generators; Vectors; Wind farms; Wind power generation; Agent-based approach; electric vehicles; linear programming; virtual power plants;
Journal_Title :
Smart Grid, IEEE Transactions on
DOI :
10.1109/TSG.2013.2259270