DocumentCode
730287
Title
An effective key generation system using improved channel reciprocity
Author
Junqing Zhang ; Woods, Roger ; Marshall, Alan ; Duong, Trung Q.
Author_Institution
ECIT, Queen´s Univ. Belfast, Belfast, UK
fYear
2015
fDate
19-24 April 2015
Firstpage
1727
Lastpage
1731
Abstract
In physical layer security systems there is a clear need to exploit the radio link characteristics to automatically generate an encryption key between two end points. The success of the key generation depends on the channel reciprocity, which is impacted by the non-simultaneous measurements and the white nature of the noise. In this paper, an OFDM subcarriers´ channel responses based key generation system with enhanced channel reciprocity is proposed. By theoretically modelling the OFDM subcarriers´ channel responses, the channel reciprocity is modelled and analyzed. A low pass filter is accordingly designed to improve the channel reciprocity by suppressing the noise. This feature is essential in low SNR environments in order to reduce the risk of the failure of the information reconciliation phase during key generation. The simulation results show that the low pass filter improves the channel reciprocity, decreases the key disagreement, and effectively increases the success of the key generation.
Keywords
OFDM modulation; cryptography; interference suppression; low-pass filters; radiofrequency interference; risk management; telecommunication network reliability; telecommunication security; wireless channels; OFDM subcarriers channel responses based key generation system; automatic encryption key generation; channel reciprocity improvement; failure risk reduction; information reconciliation phase; low pass filter; noise suppression; nonsimultaneous measurements; physical layer security systems; wireless channel; Analytical models; Channel estimation; Mathematical model; OFDM; Security; Signal to noise ratio; Physical layer security; channel reciprocity; key disagreement; key generation; low pass filter;
fLanguage
English
Publisher
ieee
Conference_Titel
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on
Conference_Location
South Brisbane, QLD
Type
conf
DOI
10.1109/ICASSP.2015.7178266
Filename
7178266
Link To Document