• DocumentCode
    730645
  • Title

    Bayesian parameter estimation of Jump-Langevin systems for trend following in finance

  • Author

    Murphy, James ; Godsill, Simon

  • Author_Institution
    Dept. of Eng., Univ. of Cambridge, Cambridge, UK
  • fYear
    2015
  • fDate
    19-24 April 2015
  • Firstpage
    4125
  • Lastpage
    4129
  • Abstract
    In this paper we present a Bayesian method for parameter estimation in linear Jump-Langevin systems, i.e. systems driven by a linear, mean-reverting jump-diffusion trend process. Such models have been applied successfully to trend following in finance, in order to develop momentum-based trading strategies. Parameter estimation is based around a reversible-jump MCMC method for jump-time inference. Parameter estimation is demonstrated on both synthetic and financial time series, and estimated parameters are compared with ad hoc parameter estimates used in earlier work.
  • Keywords
    Bayes methods; Markov processes; Monte Carlo methods; commerce; financial management; inference mechanisms; parameter estimation; stock markets; time series; Bayesian parameter estimation; financial markets; financial time series; jump-time inference; linear jump-Langevin systems; mean-reverting jump-diffusion trend process; momentum-based trading strategies; reversible-jump MCMC method; synthetic time series; trend following; Indexes; Proposals; Tin; Bayesian; Jump-diffusion; finance; parameter estimation; trend following;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on
  • Conference_Location
    South Brisbane, QLD
  • Type

    conf

  • DOI
    10.1109/ICASSP.2015.7178747
  • Filename
    7178747