DocumentCode :
730645
Title :
Bayesian parameter estimation of Jump-Langevin systems for trend following in finance
Author :
Murphy, James ; Godsill, Simon
Author_Institution :
Dept. of Eng., Univ. of Cambridge, Cambridge, UK
fYear :
2015
fDate :
19-24 April 2015
Firstpage :
4125
Lastpage :
4129
Abstract :
In this paper we present a Bayesian method for parameter estimation in linear Jump-Langevin systems, i.e. systems driven by a linear, mean-reverting jump-diffusion trend process. Such models have been applied successfully to trend following in finance, in order to develop momentum-based trading strategies. Parameter estimation is based around a reversible-jump MCMC method for jump-time inference. Parameter estimation is demonstrated on both synthetic and financial time series, and estimated parameters are compared with ad hoc parameter estimates used in earlier work.
Keywords :
Bayes methods; Markov processes; Monte Carlo methods; commerce; financial management; inference mechanisms; parameter estimation; stock markets; time series; Bayesian parameter estimation; financial markets; financial time series; jump-time inference; linear jump-Langevin systems; mean-reverting jump-diffusion trend process; momentum-based trading strategies; reversible-jump MCMC method; synthetic time series; trend following; Indexes; Proposals; Tin; Bayesian; Jump-diffusion; finance; parameter estimation; trend following;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on
Conference_Location :
South Brisbane, QLD
Type :
conf
DOI :
10.1109/ICASSP.2015.7178747
Filename :
7178747
Link To Document :
بازگشت