• DocumentCode
    735333
  • Title

    RRAM-based 7T1R nonvolatile SRAM with 2x reduction in store energy and 94x reduction in restore energy for frequent-off instant-on applications

  • Author

    Lee, Albert ; Chang, Meng-Fan ; Lin, Chien-Chen ; Chen, Chien-Fu ; Ho, Mon-Shu ; Kuo, Chia-Chen ; Tseng, Pei-Ling ; Sheu, Shyh-Shyuan ; Ku, Tzu-Kun

  • Author_Institution
    National Tsing Hua University, Taiwan
  • fYear
    2015
  • fDate
    17-19 June 2015
  • Abstract
    This study proposes a 7T1R nonvolatile SRAM (nvSRAM) to 1) reduce store energy by using a single NVM device, 2) suppress DC-short current during restore operations through the use of a pulsed-overwrite (POW) scheme, and 3) achieves high restore yield by using a differentially supplied initialization (DSI) scheme. This initialization-and-overwrite (IOW) 7T1R nvSRAM improves breakeven-time (BET) by 6+x, compared to previous nvSRAMs. We fabricated a 16Kb IOW-7T1R nvSRAM using HfOx RRAM and a 90nm process. This represents the first ever silicon verified single-NVM nvSRAM macro. Measurements obtained in test-mode confirm that the proposed nvSRAM reduces store energy by 2x and restore energy by 94x, compared to 2R-based nvSRAMs.
  • Keywords
    Energy measurement; Hafnium compounds; Nonvolatile memory; Random access memory; Sensors; Silicon; Switches;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    VLSI Circuits (VLSI Circuits), 2015 Symposium on
  • Conference_Location
    Kyoto, Japan
  • Print_ISBN
    978-4-86348-502-0
  • Type

    conf

  • DOI
    10.1109/VLSIC.2015.7231368
  • Filename
    7231368