• DocumentCode
    736351
  • Title

    Parameter sensitivity analysis of Social Spider Algorithm

  • Author

    Yu, James J.Q. ; Li, Victor O.K.

  • Author_Institution
    Department of Electrical and Electronic Engineering, The University of Hong Kong
  • fYear
    2015
  • fDate
    25-28 May 2015
  • Firstpage
    3200
  • Lastpage
    3205
  • Abstract
    Social Spider Algorithm (SSA) is a recently proposed general-purpose real-parameter metaheuristic designed to solve global numerical optimization problems. This work systematically benchmarks SSA on a suite of 11 functions with different control parameters. We conduct parameter sensitivity analysis of SSA using advanced non-parametric statistical tests to generate statistically significant conclusion on the best performing parameter settings. The conclusion can be adopted in future work to reduce the effort in parameter tuning. In addition, we perform a success rate test to reveal the impact of the control parameters on the convergence speed of the algorithm.
  • Keywords
    Algorithm design and analysis; Optimization; Social spider algorithm; evolutionary computation; global optimization; meta-heuristic; parameter sensitivity analysis;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Evolutionary Computation (CEC), 2015 IEEE Congress on
  • Conference_Location
    Sendai, Japan
  • Type

    conf

  • DOI
    10.1109/CEC.2015.7257289
  • Filename
    7257289