DocumentCode
736351
Title
Parameter sensitivity analysis of Social Spider Algorithm
Author
Yu, James J.Q. ; Li, Victor O.K.
Author_Institution
Department of Electrical and Electronic Engineering, The University of Hong Kong
fYear
2015
fDate
25-28 May 2015
Firstpage
3200
Lastpage
3205
Abstract
Social Spider Algorithm (SSA) is a recently proposed general-purpose real-parameter metaheuristic designed to solve global numerical optimization problems. This work systematically benchmarks SSA on a suite of 11 functions with different control parameters. We conduct parameter sensitivity analysis of SSA using advanced non-parametric statistical tests to generate statistically significant conclusion on the best performing parameter settings. The conclusion can be adopted in future work to reduce the effort in parameter tuning. In addition, we perform a success rate test to reveal the impact of the control parameters on the convergence speed of the algorithm.
Keywords
Algorithm design and analysis; Optimization; Social spider algorithm; evolutionary computation; global optimization; meta-heuristic; parameter sensitivity analysis;
fLanguage
English
Publisher
ieee
Conference_Titel
Evolutionary Computation (CEC), 2015 IEEE Congress on
Conference_Location
Sendai, Japan
Type
conf
DOI
10.1109/CEC.2015.7257289
Filename
7257289
Link To Document