DocumentCode :
737325
Title :
Voltage-Based Control of a Smart Transformer in a Microgrid
Author :
Vandoorn, Tine L. ; De Kooning, Jeroen D M ; Meersman, Bart ; Guerrero, Josep M. ; Vandevelde, Lieven
Author_Institution :
Dept. of Electr. Energy, Ghent Univ., Ghent, Belgium
Volume :
60
Issue :
4
fYear :
2013
fDate :
4/1/2013 12:00:00 AM
Firstpage :
1291
Lastpage :
1305
Abstract :
For the islanded operation of a microgrid, several control strategies have been developed. For example, voltage-based droop control can be implemented for the active power control of the generators and the control of the active loads. One of the main advantages of a microgrid is that it can be implemented as a controllable entity within the electrical network. This requires the ability of the utility grid to control or influence the power exchange with the microgrid by communicating with only one unit. However, little research has been conducted on controlling the power transfer through the point of common coupling (PCC). This paper addresses this issue by introducing the concept of a smart transformer (ST) at the PCC. This unit controls the active power exchange between a microgrid and the utility grid dependent on the state of both networks and other information communicated to the ST. To control the active power, the ST uses its taps that change the microgrid-side voltage at the PCC. This voltage-based control of the ST is compatible with the voltage-based droop control of the units in the microgrid that is used in this paper. Hence, the microgrid units can automatically respond to changes of ST set points and vice versa. Several simulation cases are included in this paper to demonstrate the feasibility of the ST concept.
Keywords :
distributed power generation; power control; power distribution control; power distribution economics; power markets; power transformers; power utilisation; smart power grids; voltage control; PCC; ST; active load control; active power control; active power exchange; electrical network; microgrid-side voltage utility; point of common coupling; power transfer; smart transformer; voltage-based droop control; Couplings; Generators; Power control; Power markets; Reactive power; Smart grids; Voltage control; Active load control; active power control; droop control; islanded microgrid; point of common coupling (PCC); voltage-source inverter (VSI);
fLanguage :
English
Journal_Title :
Industrial Electronics, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0046
Type :
jour
DOI :
10.1109/TIE.2011.2165463
Filename :
5991958
Link To Document :
بازگشت