Title :
Extractive Broadcast News Summarization Leveraging Recurrent Neural Network Language Modeling Techniques
Author :
Kuan-Yu Chen ; Shih-Hung Liu ; Chen, Berlin ; Hsin-Min Wang ; Ea-Ee Jan ; Wen-Lian Hsu ; Hsin-Hsi Chen
Author_Institution :
Nat. Taiwan Univ., Taipei, Taiwan
Abstract :
Extractive text or speech summarization manages to select a set of salient sentences from an original document and concatenate them to form a summary, enabling users to better browse through and understand the content of the document. A recent stream of research on extractive summarization is to employ the language modeling (LM) approach for important sentence selection, which has proven to be effective for performing speech summarization in an unsupervised fashion. However, one of the major challenges facing the LM approach is how to formulate the sentence models and accurately estimate their parameters for each sentence in the document to be summarized. In view of this, our work in this paper explores a novel use of recurrent neural network language modeling (RNNLM) framework for extractive broadcast news summarization. On top of such a framework, the deduced sentence models are able to render not only word usage cues but also long-span structural information of word co-occurrence relationships within broadcast news documents, getting around the need for the strict bag-of-words assumption. Furthermore, different model complexities and combinations are extensively analyzed and compared. Experimental results demonstrate the performance merits of our summarization methods when compared to several well-studied state-of-the-art unsupervised methods.
Keywords :
electronic publishing; information retrieval; natural language processing; recurrent neural nets; speech processing; text analysis; unsupervised learning; LM approach; RNNLM framework; bag-of-words assumption; extractive broadcast news summarization; extractive text summarization; important sentence selection; long-span structural information; recurrent neural network language modeling techniques; sentence models; speech summarization; word co-occurrence relationships; Data models; IEEE transactions; Recurrent neural networks; Speech; Speech processing; Speech recognition; Training; Language modeling; long-span structural information; recurrent neural network; speech summarization;
Journal_Title :
Audio, Speech, and Language Processing, IEEE/ACM Transactions on
DOI :
10.1109/TASLP.2015.2432578