DocumentCode :
737699
Title :
A ZVS-PWM Three-Phase Current-Fed Push–Pull DC–DC Converter
Author :
Andersen, Romero Leandro ; Barbi, Ivo
Author_Institution :
Dept. of Electr. Eng., Fed. Univ. of Santa Catarina, Florianopolis, Brazil
Volume :
60
Issue :
3
fYear :
2013
fDate :
3/1/2013 12:00:00 AM
Firstpage :
838
Lastpage :
847
Abstract :
In this paper, a ZVS-PWM three-phase current-fed push-pull dc-dc converter is proposed. When compared to single-phase topologies, the three-phase dc-dc conversion increases the power density, uses the magnetic core of the transformer more efficiently, reduces the stress on switches, and requires smaller filters since the frequency for its design is higher. The proposed converter employs an active clamping technique by connecting the primary side of the transformer to a three-phase full bridge of switches and a clamping capacitor. This circuit allows the energy from the leakage inductances to be reused, increasing the efficiency of the converter. If appropriate parameters are chosen, soft-commutation of the switches (ZVS) can also be achieved. The soft-commutation improves the efficiency even further, allows higher switching frequencies to be used, and reduces the electromagnetic interference significantly. Applications such as fuel cell systems, transportation, and uninterruptable power supplies are some examples that can benefit from the advantages presented by this converter. The theoretical analysis, a design example, and the experimental results for a prototype implementing this topology are presented. The prototype was designed to process 4 kW at full load with an input voltage of 120 V, an output voltage of 400 V, and a switching frequency of 40 kHz.
Keywords :
DC-DC power convertors; PWM power convertors; clamps; electrical faults; filters; inductance; switching convertors; topology; transformer cores; zero voltage switching; ZVS-PWM three-phase current-fed push-pull DC-DC converter; active clamping technique; clamping capacitor; electromagnetic interference; leakage inductances; magnetic core; power density; single-phase topologies; switche stress; switches soft-commutation; switching frequencies; three-phase full switches bridge; transformer side; Capacitors; Clamps; Equations; Inductors; Logic gates; Topology; Zero voltage switching; Active clamping; dc–dc power conversion; multiphase; soft-commutation;
fLanguage :
English
Journal_Title :
Industrial Electronics, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0046
Type :
jour
DOI :
10.1109/TIE.2012.2189539
Filename :
6161637
Link To Document :
بازگشت