DocumentCode :
739339
Title :
Visual Tracking Using Strong Classifier and Structural Local Sparse Descriptors
Author :
Ma, Bo ; Shen, Jianbing ; Liu, Yangbiao ; Hu, Hongwei ; Shao, Ling ; Li, Xuelong
Author_Institution :
Beijing Laboratory of Intelligent Information Technology, School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
Volume :
17
Issue :
10
fYear :
2015
Firstpage :
1818
Lastpage :
1828
Abstract :
Sparse coding methods have achieved great success in visual tracking, and we present a strong classifier and structural local sparse descriptors for robust visual tracking. Since the summary features considering the sparse codes are sensitive to occlusion and other interfering factors, we extract local sparse descriptors from a fraction of all patches by performing a pooling operation. The collection of local sparse descriptors is combined into a boosting-based strong classifier for robust visual tracking using a discriminative appearance model. Furthermore, a structural reconstruction error based weight computation method is proposed to adjust the classification score of each candidate for more precise tracking results. To handle appearance changes during tracking, we present an occlusion-aware template update scheme. Comprehensive experimental comparisons with the state-of-the-art algorithms demonstrated the better performance of the proposed method.
Keywords :
Dictionaries; Multimedia communication; Robustness; Target tracking; Training; Visualization; Local descriptor; sparse representation; strong classifier; visual tracking;
fLanguage :
English
Journal_Title :
Multimedia, IEEE Transactions on
Publisher :
ieee
ISSN :
1520-9210
Type :
jour
DOI :
10.1109/TMM.2015.2463221
Filename :
7173057
Link To Document :
بازگشت