DocumentCode :
739532
Title :
Image Pair Analysis With Matrix-Value Operator
Author :
Tang, Yi ; Yuan, Yuan
Author_Institution :
School of Mathematics and Computer Science, Yunnan Minzu University, Kunming, China
Volume :
45
Issue :
10
fYear :
2015
Firstpage :
2042
Lastpage :
2050
Abstract :
Image pair analysis provides significant image pair priori which describes the dependency between training image pairs for various learning-based image processing. For avoiding the information loss caused by vectorizing training images, a novel matrix-value operator learning method is proposed for image pair analysis. Sample-dependent operators, named image pair operators (IPOs) by us, are employed to represent the local image-to-image dependency defined by each of the training image pairs. A linear combination of IPOs is learned via operator regression for representing the global dependency between input and output images defined by all of the training image pairs. The proposed operator learning method enjoys the image-level information of training image pairs because IPOs enable training images to be used without vectorizing during the learning and testing process. By applying the proposed algorithm in learning-based super-resolution, the efficiency and the effectiveness of the proposed algorithm in learning image pair information is verified by experimental results.
Keywords :
Algorithm design and analysis; Dictionaries; Image resolution; Tensile stress; Training; Vectors; Image pair analysis; learning-based image processing; matrix-value operator learning;
fLanguage :
English
Journal_Title :
Cybernetics, IEEE Transactions on
Publisher :
ieee
ISSN :
2168-2267
Type :
jour
DOI :
10.1109/TCYB.2014.2363882
Filename :
7017516
Link To Document :
بازگشت