DocumentCode
740663
Title
Design Aspects of an Antenna-MMIC Interface Using a Stacked Patch at 71–86 GHz
Author
Smith, Stephen L. ; Merkle, Thomas ; Smart, Ken W. ; Hay, Stuart G. ; Mei Shen ; Ceccato, F.
Author_Institution
ICT Centre, Wireless & Networking Technol. Lab., CSIRO, Marsfield, NSW, Australia
Volume
61
Issue
4
fYear
2013
fDate
4/1/2013 12:00:00 AM
Firstpage
1591
Lastpage
1598
Abstract
A bond-wire-free interconnection between monolithic microwave integrated circuit (MMIC) and antenna using a stacked patch configuration is investigated. An edge-fed patch on a gallium arsenide (GaAs) MMIC chip drives a patch antenna integrated in the lid of the MMIC package. The lid is formed using a liquid crystal polymer (LCP) substrate. The first implementation using a laminated multichip module (MCM-L) process is presented that covers the designated E-band spectrum for long-range wireless communications (71-86 GHz). Electromagnetic simulations and measurements of antenna radiation patterns agree well over the whole frequency range of interest. Important design aspects and manufacturing tolerances specific for the implementation of the interface in MCM-L millimeter-wave front-ends are presented. An alternative design is proposed for improved radiation patterns across the band.
Keywords
III-V semiconductors; MIMIC; MMIC; antenna feeds; antenna radiation patterns; gallium arsenide; liquid crystal polymers; microstrip antennas; millimetre wave antennas; multichip modules; E-band spectrum; GaAs; LCP substrate; MCM-L millimeter-wave front-ends; MCM-L process; MMIC package; antenna radiation pattern measurements; antenna-MMIC interface design; edge-fed patch; electromagnetic simulations; frequency 71 GHz to 86 GHz; gallium arsenide MMIC chip; laminated multichip module process; liquid crystal polymer substrate; long-range wireless communications; monolithic microwave integrated circuit; patch antenna; stacked patch configuration; Antenna measurements; Antenna radiation patterns; Frequency measurement; Gain; Gallium arsenide; Microstrip; Waveguide transitions; Active antennas; microstrip antennas; microwave integrated circuits (MICs); millimeter wave antennas; multichip modules;
fLanguage
English
Journal_Title
Antennas and Propagation, IEEE Transactions on
Publisher
ieee
ISSN
0018-926X
Type
jour
DOI
10.1109/TAP.2013.2239251
Filename
6451154
Link To Document