DocumentCode :
741521
Title :
Analytical Shape Derivatives of the MFIE System Matrix Discretized With RWG Functions
Author :
Kataja, Juhani ; Polimeridis, Athanasios G. ; Mosig, Juan R. ; Yla-Oijala, Pasi
Author_Institution :
Dept. of Radio Sci. & Eng., Aalto Univ., Aalto, Finland
Volume :
61
Issue :
2
fYear :
2013
Firstpage :
985
Lastpage :
988
Abstract :
An analytical formula for the shape derivative of the magnetic field integral equation (MFIE) method of moments (MoM) system matrix (or impedance matrix) is derived and validated against finite difference formulas. The motivation for computing the shape derivatives stems from adjoint variable methods (AVM). The Galerkin system matrix is constructed by means of Rao-Wilton-Glisson (RWG) basis and testing functions. The shape derivative formula yields an integral representation which is of same singularity order as the integrals appearing in the traditional MFIE system matrix.
Keywords :
Galerkin method; computational electromagnetics; electromagnetic field theory; electromagnetic wave scattering; magnetic field integral equations; method of moments; Galerkin system matrix; MFIE system matrix; RWG functions; Rao-Wilton-Glisson functions; analytical shape derivatives; impedance matrix; integral representation; magnetic field integral equation; method of moments; Equations; Indexes; Integral equations; Mathematical model; Moment methods; Shape; Vectors; Adjoint variable method (AVM); magnetic field integral equation (MFIE); method of moments (MoM); sensitivity analysis; shape optimization; strongly singular integrals;
fLanguage :
English
Journal_Title :
Antennas and Propagation, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-926X
Type :
jour
DOI :
10.1109/TAP.2012.2223447
Filename :
6327606
Link To Document :
بازگشت