Title :
Design and Evaluation of High-Performance Processing Elements for Reconfigurable Systems
Author :
Purohit, Sushri Sunita ; Chalamalasetti, Sai Rahul ; Margala, Martin ; Vanderbauwhede, Wim A.
Author_Institution :
Intel Corp., Austin, TX, USA
Abstract :
In this paper, we present the design and evaluation of two new processing elements for reconfigurable computing. We also present a circuit-level implementation of the data paths in static and dynamic design styles to explore the various performance-power tradeoffs involved. When implemented in IBM 90-nm CMOS process, the 8-b data paths achieve operating frequencies ranging over 1 GHz both for static and dynamic implementations, with each data path supporting single-cycle computational capability. A novel single-precision floating point processing element (FPPE) using a 24-b variant of the proposed data paths is also presented. The full dynamic implementation of the FPPE shows that it operates at a frequency of 1 GHz with 6.5-mW average power consumption. Comparison with competing architectures shows that the FPPE provides two orders of magnitude higher throughput. Furthermore, to evaluate its feasibility as a soft-processing solution, we also map the floating point unit onto the Virtex 4 and 5 devices, and observe that the unit requires less than 1% of the total logic slices, while utilizing only around 4% of the DSP blocks available. When compared against popular field-programmable-gate-array-based floating point units, our design on Virtex 5 showed significantly lower resource utilization, while achieving comparable peak operating frequency.
Keywords :
CMOS integrated circuits; field programmable gate arrays; floating point arithmetic; reconfigurable architectures; CMOS process; DSP block; FPPE; Virtex 4 device; Virtex 5 device; circuit-level implementation; data path design; dynamic design; floating point processing element; floating point unit; frequency 1 GHz; high-performance processing element; performance-power tradeoff; power 6.5 mW; reconfigurable computing; size 90 nm; static design; Adders; Algorithm design and analysis; Arrays; Compressors; Multiplexing; Registers; Computer arithmetic; data path design; reconfigurable computing;
Journal_Title :
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on
DOI :
10.1109/TVLSI.2012.2220868