DocumentCode :
742257
Title :
Uncertain<T>: Abstractions for Uncertain Hardware and Software
Author :
Bornholt, James ; Mytkowicz, Todd ; McKinley, Kathryn S.
Volume :
35
Issue :
3
fYear :
2015
Firstpage :
132
Lastpage :
143
Abstract :
Building correct, efficient systems that reason about the approximations produced by sensors, machine learning, big data, humans, and approximate hardware and software requires new standards and abstractions. The Uncertain <;T>; software abstraction aims to tackle these pervasive correctness, optimization, and programmability problems and guide hardware and software designers in producing estimates.
Keywords :
Big Data; hardware-software codesign; learning (artificial intelligence); big data; machine learning; programmability problems; sensors; software abstraction; uncertain hardware; uncertain software; Bayes methods; Energy efficiency; Global Positioning System; Probabilistic programming; Programming; Sensors; Uncertainty; approximation; energy efficiency; estimates; probabilistic programming; programming models; uncertainty;
fLanguage :
English
Journal_Title :
Micro, IEEE
Publisher :
ieee
ISSN :
0272-1732
Type :
jour
DOI :
10.1109/MM.2015.52
Filename :
7106409
Link To Document :
بازگشت