• DocumentCode
    742908
  • Title

    Minimum Total Error Entropy Method for Parameter Estimation

  • Author

    Pengcheng Shen ; Chunguang Li

  • Author_Institution
    Dept. of Inf. Sci. & Electron. Eng., Zhejiang Univ., Hangzhou, China
  • Volume
    63
  • Issue
    15
  • fYear
    2015
  • Firstpage
    4079
  • Lastpage
    4090
  • Abstract
    In the errors-in-variables (EIV) system/model, both input data and output data are assumed to be contaminated with noise. For the parameter estimation problem of EIV system, the total least squares (TLS) is a classical and widely used method. The TLS method is based on minimizing the squared total error and thus can not sufficiently utilize all possible information from the data when the noise is non-Gaussian. In non-Gaussian cases, the error entropy criterion (EEC) and the EEC-based minimum error entropy (MEE) method have shown their superiority in previous studies. However, the traditional MEE method only considers noise-free input data in the estimation. So it will lead to suboptimal solutions when applied to EIV system. In this work, we present a total error entropy criterion (TEEC) and a corresponding method named minimum total error entropy (MTEE), which additionally considers the existence of noise in input data. Besides, we carry out theoretically the local stability analysis of the proposed method and obtain a bound for the step size to ensure local stability. Simulation results corroborate the effectiveness of the MTEE. It achieves superior performance comparing to the TLS and MEE, when the noise is non-Gaussian.
  • Keywords
    Gaussian noise; entropy; least squares approximations; parameter estimation; EEC-based MEE method; EEC-based minimum error entropy method; EIV model; EIV system; Gaussian noise; MTEE; TEEC; TLS method; error entropy criterion; errors-in-variable model; errors-in-variable system; local stability analysis; minimum total error entropy; minimum total error entropy method; noise-free input data; parameter estimation; total error entropy criterion; total least square method; Cost function; Entropy; Estimation; Noise; Noise measurement; Parameter estimation; Signal processing algorithms; Information theory; minimum error entropy; parameter estimation; total error entropy; total least squares;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2015.2437836
  • Filename
    7112643