DocumentCode :
743273
Title :
Efficient Gröbner Basis Reductions for Formal Verification of Galois Field Arithmetic Circuits
Author :
Jinpeng Lv ; Kalla, Priyank ; Enescu, Florian
Author_Institution :
Cadence Design Syst., San Jose, CA, USA
Volume :
32
Issue :
9
fYear :
2013
Firstpage :
1409
Lastpage :
1420
Abstract :
Galois field arithmetic is a critical component in communication and security-related hardware, requiring dedicated arithmetic architectures for better performance. In many Galois field applications, such as cryptography, the data-path size in the circuits can be very large. Formal verification of such circuits is beyond the capabilities of contemporary verification techniques. This paper addresses formal verification of combinational arithmetic circuits over Galois fields of the type F2k using a computer-algebra/algebraic-geometry-based approach. The verification problem is formulated as membership testing of a given specification polynomial in a corresponding ideal generated by the circuit constraints. Ideal membership testing requires the computation of a Gröbner basis, which is computationally very expensive. To overcome this limitation, we analyze the circuit topology and derive a term order to represent the polynomials. Subsequently, using the theory of Gröbner bases over F2k, we show that this term order renders the set of polynomials itself a minimal Gröbner basis of this ideal. Consequently, the verification test reduces to a much simpler case of Gröbner basis reduction via polynomial division, significantly enhancing verification efficiency. To further improve our approach, we exploit the concepts presented in the F4 algorithm for Gröbner basis, and show that the verification test can be formulated as Gaussian elimination on a matrix representation of the problem. Finally, we demonstrate the ability of our approach to verify the correctness of, and detect bugs in, up to 163-bit circuits in F2163-whereas verification utilizing contemporary techniques proves infeasible.
Keywords :
Galois fields; combinational circuits; digital arithmetic; electronic engineering computing; formal verification; integrated circuit testing; network topology; polynomials; process algebra; program debugging; F4 algorithm; Galois field application; Galois field arithmetic circuit; Gaussian elimination; Grobner basis reduction; arithmetic architecture; bug detection; circuit constraint; circuit topology; combinational arithmetic circuit; computer-algebra/algebraic-geometry-based approach; cryptography; data-path size; formal verification; matrix representation; membership testing; polynomial division; specification polynomial; verification test; Algorithm design and analysis; Cryptography; Galois fields; Hardware; Integrated circuit modeling; Logic gates; Polynomials; Arithmetic circuits; Galois fields; Gröbner bases; computer algebra; formal verification;
fLanguage :
English
Journal_Title :
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0070
Type :
jour
DOI :
10.1109/TCAD.2013.2259540
Filename :
6582606
Link To Document :
بازگشت