• DocumentCode
    743432
  • Title

    A Markov Chain Monte Carlo Approach to Nonlinear Parametric System Identification

  • Author

    Bai, Er-Wei ; Ishii, Hideaki ; Tempo, Roberto

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Univ. of Iowa, Iowa City, IA, USA
  • Volume
    60
  • Issue
    9
  • fYear
    2015
  • Firstpage
    2542
  • Lastpage
    2546
  • Abstract
    Nonlinear system identification is discussed in a mixed set-membership and statistical setting. A Markov chain Monte Carlo (MCMC) approach is proposed that estimates the feasible parameter set, the minimum volume outer-bounding ellipsoid and the minimum variance estimate. The proposed algorithm is proved to be convergent and enjoys some desirable properties. Further, its computational complexity and numerical accuracy are studied.
  • Keywords
    Markov processes; Monte Carlo methods; computational complexity; convergence; nonlinear systems; parameter estimation; Markov chain Monte Carlo approach; computational complexity; convergence; minimum variance estimate; mixed set-membership; nonlinear parametric system identification; outer-bounding ellipsoid; parameter set estimation; Approximation methods; Computational complexity; Convergence; Ellipsoids; Noise; Random sequences; Monte Carlo; parameter estimation; system identification;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.2014.2380997
  • Filename
    6985540