Title :
Matching Composite Sketches to Face Photos: A Component-Based Approach
Author :
Hu Han ; Klare, Brendan F. ; Bonnen, K. ; Jain, Anubhav K.
Author_Institution :
Dept. of Comput. Sci. & Eng., Michigan State Univ., East Lansing, MI, USA
Abstract :
The problem of automatically matching composite sketches to facial photographs is addressed in this paper. Previous research on sketch recognition focused on matching sketches drawn by professional artists who either looked directly at the subjects (viewed sketches) or used a verbal description of the subject´s appearance as provided by an eyewitness (forensic sketches). Unlike sketches hand drawn by artists, composite sketches are synthesized using one of the several facial composite software systems available to law enforcement agencies. We propose a component-based representation (CBR) approach to measure the similarity between a composite sketch and mugshot photograph. Specifically, we first automatically detect facial landmarks in composite sketches and face photos using an active shape model (ASM). Features are then extracted for each facial component using multiscale local binary patterns (MLBPs), and per component similarity is calculated. Finally, the similarity scores obtained from individual facial components are fused together, yielding a similarity score between a composite sketch and a face photo. Matching performance is further improved by filtering the large gallery of mugshot images using gender information. Experimental results on matching 123 composite sketches against two galleries with 10,123 and 1,316 mugshots show that the proposed method achieves promising performance (rank-100 accuracies of 77.2% and 89.4%, respectively) compared to a leading commercial face recognition system (rank-100 accuracies of 22.8% and 52.0%) and densely sampled MLBP on holistic faces (rank-100 accuracies of 27.6% and 10.6%). We believe our prototype system will be of great value to law enforcement agencies in apprehending suspects in a timely fashion.
Keywords :
face recognition; filtering theory; image fusion; image matching; image representation; object detection; police; CBR approach; component-based representation approach; composite sketch matching; face recognition system; facial component fusion; facial composite software system; facial landmark detection; facial photograph; gender information; image filtering; law enforcement agency; matching performance; mugshot photograph; multiscale local binary pattern; similarity measurement; similarity score; sketch recognition; Active shape model; Face recognition; Image fusion; Image matching; Image representation; Law enforcement; Component-based face representation; composite sketch; face recognition; forensic sketch; heterogeneous face recognition; modality gap;
Journal_Title :
Information Forensics and Security, IEEE Transactions on
DOI :
10.1109/TIFS.2012.2228856