DocumentCode
744068
Title
The Weighted Averages Method for Semi-Infinite Range Integrals Involving Products of Bessel Functions
Author
Golubovic, Ruzica ; Polimeridis, Athanasios G. ; Mosig, Juan R.
Author_Institution
Lab. of Electromagn. & Acoust. (LEMA), Ecole Polytech. Fed. de Lausanne (EPFL), Lausanne, Switzerland
Volume
61
Issue
11
fYear
2013
Firstpage
5589
Lastpage
5596
Abstract
An efficient and accurate method, based on the weighted averages (WA) extrapolation technique, is presented for the evaluation of semi-infinite range integrals involving products of Bessel functions of arbitrary order. The method requires splitting the integration interval into a finite and an infinite part. The integral over the first finite part is computed using an adaptive quadrature rule based on Patterson formulas. For the evaluation of the remaining integral, the strongly irregular oscillatory behavior of the product of two Bessel functions is first represented as a sum of two asymptotically simply oscillating functions. Then, by applying the integration-then-summation technique, a sequence of partial integrals is obtained, and its convergence is accelerated with the help of WA. Details and possible complications involved in the method are addressed. Finally, the excellent performance of the proposed method is demonstrated throughout several numerical examples.
Keywords
Bessel functions; extrapolation; Bessel functions products; Patterson formulas; adaptive quadrature rule; arbitrary order; integration-then-summation technique; irregular oscillatory behavior; oscillatory behavior; partial integrals sequence; semiinfinite range integrals; semiinilnite range integrals; weighted averages extrapolation technique; weighted averages method; Acceleration; Accuracy; Convergence; Electromagnetics; Extrapolation; Integrated circuits; Kernel; Bessel functions; extrapolation methods; semi-infinite integrals; weighted-averages method;
fLanguage
English
Journal_Title
Antennas and Propagation, IEEE Transactions on
Publisher
ieee
ISSN
0018-926X
Type
jour
DOI
10.1109/TAP.2013.2280048
Filename
6587731
Link To Document