Title :
Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images
Author :
Cuadra, Meritxell Bach ; Cammoun, Leila ; Butz, Torsten ; Cuisenaire, Olivier ; Thiran, Jean-Philippe
Author_Institution :
Signal Process. Inst., Ecole Polytechnique Federale Lausanne, Switzerland
Abstract :
This paper presents a validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of classes are assessed. The methods are tested on simulated data for which the classification ground truth is known. Different noise and intensity nonuniformities are added to simulate real imaging conditions. No enhancement of the image quality is considered either before or during the classification process. This way, the accuracy of the methods and their robustness against image artifacts are tested. Classification is also performed on real data where a quantitative validation compares the methods´ results with an estimated ground truth from manual segmentations by experts. Validity of the various classification methods in the labeling of the image as well as in the tissue volume is estimated with different local and global measures. Results demonstrate that methods relying on both intensity and spatial information are more robust to noise and field inhomogeneities. We also demonstrate that partial volume is not perfectly modeled, even though methods that account for mixture classes outperform methods that only consider pure Gaussian classes. Finally, we show that simulated data results can also be extended to real data.
Keywords :
biological tissues; biomedical MRI; brain; image classification; image segmentation; medical image processing; statistical analysis; Gaussian classes; T1-weighted MR brain images; field inhomogeneities; image segmentation; magnetic resonance images; mixture classes; noise; statistical nonsupervised brain tissue classification; tissue modelization; Brain modeling; Image quality; Image segmentation; Labeling; Magnetic field measurement; Magnetic noise; Magnetic resonance; Magnetic resonance imaging; Noise robustness; Testing; Brain tissue models; hidden Markov random fields models; magnetic resonance imaging; partial volume; statistical classification; validation study; Adult; Algorithms; Artificial Intelligence; Brain; Computer Simulation; Female; Humans; Image Enhancement; Image Interpretation, Computer-Assisted; Imaging, Three-Dimensional; Magnetic Resonance Imaging; Models, Biological; Models, Statistical; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity;
Journal_Title :
Medical Imaging, IEEE Transactions on
DOI :
10.1109/TMI.2005.857652