• DocumentCode
    745671
  • Title

    Estimation of Constrained Parameters With Guaranteed MSE Improvement

  • Author

    Benavoli, Alessio ; Chisci, Luigi ; Farina, Alfonso

  • Author_Institution
    DSI, Universita di Firenze, Florence
  • Volume
    55
  • Issue
    4
  • fYear
    2007
  • fDate
    4/1/2007 12:00:00 AM
  • Firstpage
    1264
  • Lastpage
    1274
  • Abstract
    We address the problem of estimating an unknown parameter vector x in a linear model y=Cx+v subject to the a priori information that the true parameter vector x belongs to a known convex polytope X. The proposed estimator has the parametrized structure of the maximum a posteriori probability (MAP) estimator with prior Gaussian distribution, whose mean and covariance parameters are suitably designed via a linear matrix inequality approach so as to guarantee, for any xisinX, an improvement of the mean-squared error (MSE) matrix over the least-squares (LS) estimator. It is shown that this approach outperforms existing "superefficient" estimators for constrained parameters based on different parametrized structures and/or shapes of the parameter membership region X
  • Keywords
    Gaussian distribution; least mean squares methods; linear matrix inequalities; maximum likelihood estimation; parameter estimation; Gaussian distribution; MAP estimator; convex polytope; guaranteed MSE; least-squares estimator; linear matrix inequality; maximum a posteriori probability estimator; mean-squared error matrix; parameter vector estimation; Covariance matrix; Gaussian distribution; Gaussian noise; Linear matrix inequalities; Maximum likelihood estimation; Minimax techniques; Parameter estimation; Shape; Target tracking; Vectors; Constrained estimators; dominating estimators; least-squares methods; linear estimation; parameter estimation; target tracking;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2006.888094
  • Filename
    4133017