• DocumentCode
    746445
  • Title

    Estimation of K distribution parameters using neural networks

  • Author

    Wachowiak, Mark P. ; Smolíková, Renata ; Zurada, Jacek M. ; Elmaghraby, Adel S.

  • Author_Institution
    Comput. Sci. & Eng. Program, Louisville Univ., KY, USA
  • Volume
    49
  • Issue
    6
  • fYear
    2002
  • fDate
    6/1/2002 12:00:00 AM
  • Firstpage
    617
  • Lastpage
    620
  • Abstract
    The K distribution is an accurate model for ultrasonic backscatter. A neural approach is developed to estimate K distribution parameters. Accuracy and consistency of the estimates from simulated K and envelope data compare favorably with other techniques. Neural networks can potentially be used as a complementary technique for tissue characterization.
  • Keywords
    acoustic signal processing; backscatter; biological tissues; biomedical ultrasonics; medical signal processing; multilayer perceptrons; parameter estimation; physiological models; ultrasonic scattering; K distribution parameters estimation; Rayleigh distribution; accurate ultrasonic backscatter model; demodulated radiofrequency signal; diagnosis; echo envelope; pathology analysis; speckle; tissue characterization technique; ultrasonography; Backpropagation; Computer science; Multilayer perceptrons; Neural networks; Probability density function; Rayleigh scattering; Shape; Signal to noise ratio; Statistics; Testing; Computer Simulation; Models, Statistical; Neural Networks (Computer); Reproducibility of Results; Signal Processing, Computer-Assisted; Ultrasonography;
  • fLanguage
    English
  • Journal_Title
    Biomedical Engineering, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9294
  • Type

    jour

  • DOI
    10.1109/TBME.2002.1001977
  • Filename
    1001977