• DocumentCode
    747579
  • Title

    The nonexistence of some five-dimensional quaternary linear codes

  • Author

    Daskalov, R. ; Metodieva, E.

  • Author_Institution
    Dept. of Math., Tech. Univ. Gabrova, Bulgaria
  • Volume
    41
  • Issue
    2
  • fYear
    1995
  • fDate
    3/1/1995 12:00:00 AM
  • Firstpage
    581
  • Lastpage
    583
  • Abstract
    Let n4(k, d) be the smallest integer n, such that a quaternary linear [n, k, d; 4]-code exists. It is proved that n4 (5, 20)=30, n4(5, 42)⩾59, n4(5, 45)⩾63, n4(5, 64)⩾88, n4(5, 80)=109, n4(5, 140)⩾189, n4(5, 143)⩾193, n4 (5, 168)⩾226, n4(5, 180)⩾242, n4(5, 183)⩾246, n4(5, 187)=251
  • Keywords
    Galois fields; linear codes; Galois field; Hamming weight; five-dimensional quaternary linear codes; lower bound; minimum weight; residual code; weight distributions; Bismuth; Galois fields; Hamming distance; Hamming weight; Linear code; Mathematics; Polynomials; Vectors;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/18.370155
  • Filename
    370155