DocumentCode :
747579
Title :
The nonexistence of some five-dimensional quaternary linear codes
Author :
Daskalov, R. ; Metodieva, E.
Author_Institution :
Dept. of Math., Tech. Univ. Gabrova, Bulgaria
Volume :
41
Issue :
2
fYear :
1995
fDate :
3/1/1995 12:00:00 AM
Firstpage :
581
Lastpage :
583
Abstract :
Let n4(k, d) be the smallest integer n, such that a quaternary linear [n, k, d; 4]-code exists. It is proved that n4 (5, 20)=30, n4(5, 42)⩾59, n4(5, 45)⩾63, n4(5, 64)⩾88, n4(5, 80)=109, n4(5, 140)⩾189, n4(5, 143)⩾193, n4 (5, 168)⩾226, n4(5, 180)⩾242, n4(5, 183)⩾246, n4(5, 187)=251
Keywords :
Galois fields; linear codes; Galois field; Hamming weight; five-dimensional quaternary linear codes; lower bound; minimum weight; residual code; weight distributions; Bismuth; Galois fields; Hamming distance; Hamming weight; Linear code; Mathematics; Polynomials; Vectors;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.370155
Filename :
370155
Link To Document :
بازگشت