Abstract :
Let n4(k, d) be the smallest integer n, such that a quaternary linear [n, k, d; 4]-code exists. It is proved that n4 (5, 20)=30, n4(5, 42)⩾59, n4(5, 45)⩾63, n4(5, 64)⩾88, n4(5, 80)=109, n4(5, 140)⩾189, n4(5, 143)⩾193, n4 (5, 168)⩾226, n4(5, 180)⩾242, n4(5, 183)⩾246, n4(5, 187)=251