Title :
Asymptotic sampling distribution of inverse coefficient-of-variation and its applications
Author :
Sharma, K.K. ; Krishna, Hare
Author_Institution :
Dept. of Stat., Meerut Univ., India
fDate :
12/1/1994 12:00:00 AM
Abstract :
This paper develops the asymptotic sampling distribution of the inverse of the coefficient of variation (InvCV). This distribution is used for making statistical inference about the population CV (coefficient of variation) or InvCV without making an assumption about the population distribution. It applies to making inferences (point and interval estimation, and hypothesis-testing) about the shape parameter of some popular lifetime distributions like the Gamma, Weibull, and log-normal, when the scale parameter is unknown. The test procedure is used to test exponentiality against a Gamma or a Weibull alternative. The results are compared with those in the literature
Keywords :
Weibull distribution; gamma distribution; log normal distribution; parameter estimation; reliability theory; Gamma distribution; Weibull distribution; asymptotic sampling distribution; hypothesis-testing; interval estimation; inverse coefficient-of-variation; lifetime distributions; log-normal distribution; point estimation; shape parameter; statistical inference; Convergence; Maximum likelihood estimation; Parameter estimation; Parametric statistics; Probability; Sampling methods; Shape; Statistical analysis; Statistical distributions; Testing;
Journal_Title :
Reliability, IEEE Transactions on