Title :
Induced temporal signatures for point-source detection
Author :
Stephens, Daniel L. ; Runkle, Robert C. ; Carlson, Deborah K. ; Peurrung, Anthony J. ; Seifert, Allen ; Wyatt, Cory
Author_Institution :
Pacific Northwest Nat. Lab., Richland, WA, USA
Abstract :
Detection of radioactive point sources is inherently divided into two regimes encompassing stationary and moving detectors. The two cases differ in their treatment of background radiation and its influence on detection sensitivity. Stationary detectors are limited by the statistical fluctuation of the background, while moving detectors may be subjected to widely and irregularly varying background radiation as a result of geographical and environmental variation. This significant systematic variation, in conjunction with the statistical variation of the background, requires a very conservative threshold in order to yield the same false-positive rate as the stationary detection case. This manuscript discusses a novel detector geometry that induces a unique time-encoded signature (TES) when exposed to point sources. The identification of temporal signatures for point sources using TES has been demonstrated and compared with the canonical method. This work demonstrates that temporal signatures mitigate systematic background variation and thus increase point-source detection in a moving detector system.
Keywords :
particle detectors; radiation detection; radioactive sources; background radiation; canonical method; coded aperture; detection sensitivity; encompassing stationary detectors; environmental variation; geographical variation; induced temporal signatures; moving detectors; radiation detection; radioactive point-source detection; statistical fluctuation; systematic variation; time-encoded signature; Apertures; Detection algorithms; Fluctuations; Gamma ray detectors; Geometry; Instruments; Object detection; Position sensitive particle detectors; Radiation detectors; Search methods; Coded aperture; point source detection; radiation detection;
Journal_Title :
Nuclear Science, IEEE Transactions on
DOI :
10.1109/TNS.2005.856905