DocumentCode :
74928
Title :
Boron Emitter Passivation With Al _{\\bf 2} O _{\\bf 3} and Al
Author :
Richter, Armin ; Benick, Jan ; Hermle, Martin
Author_Institution :
Fraunhofer Inst. for Solar Energy Syst., Freiburg, Germany
Volume :
3
Issue :
1
fYear :
2013
fDate :
Jan. 2013
Firstpage :
236
Lastpage :
245
Abstract :
Thin layers of Al2O3 are known to feature excellent passivation properties on highly boron-doped silicon surfaces. In this paper, we present a detailed study of the passivation quality of Al2O3 single layers and stacks of Al2O3 and antireflection SiNx on boron-doped emitters, where the Al2O3 was deposited by plasma-assisted atomic layer deposition and the SiNx by plasma-enhanced chemical vapor deposition. The passivation quality was studied for different atomic layer deposition temperatures, as a function of the Al2O3 layer thickness, as well as on samples with planar and random pyramids textured surfaces. These investigations were performed for different boron emitter diffusions, such as shallow, industrial emitters with high surface concentrations, as well as driven-in emitters with low surface concentrations. For all these variations, we compared systematically different thermal post-deposition treatments to activate the Al2O3 passivation, i.e., annealing processes at moderate temperatures and short high-temperature processes, as required for firing printed metal contacts. Therefore, symmetrically processed p+np + samples were fabricated, which were characterized with the photoconductance decay technique to determine emitter saturation current densities. Finally, the longtime stability of the Al2O3/SiNx stacks with planar and textured surfaces was investigated with an accelerated ultraviolet (UV) exposure experiment, miming about 34 month of outdoor performance.
Keywords :
aluminium compounds; annealing; atomic layer deposition; boron; diffusion; elemental semiconductors; passivation; photoconductivity; plasma CVD; semiconductor doping; silicon; silicon compounds; surface texture; ultraviolet radiation effects; Al2O3-SiNx; Si:B; accelerated ultraviolet exposure; annealing process; antireflection; boron emitter diffusions; boron emitter passivation; boron-doped emitters; boron-doped silicon surfaces; longtime stability; passivation properties; photoconductance decay; planar pyramids; plasma-assisted atomic layer deposition; plasma-enhanced chemical vapor deposition; printed metal contacts; random pyramids; textured surfaces; thermal post-deposition treatments; thin layers; Aluminum oxide; Annealing; Boron; Passivation; Silicon; Surface texture; Atomic layer deposition (ALD); aluminum oxide; boron emitter; surface passivation;
fLanguage :
English
Journal_Title :
Photovoltaics, IEEE Journal of
Publisher :
ieee
ISSN :
2156-3381
Type :
jour
DOI :
10.1109/JPHOTOV.2012.2226145
Filename :
6361257
بازگشت