Title :
Fast algorithms for 2-D circular convolutions and number theoretic transforms based on polynomial transforms over finite rings
Author :
Ran, Xiaonong ; Liu, K. J Ray
Author_Institution :
Nat. Semicond. Corp., Santa Clara, CA, USA
fDate :
3/1/1995 12:00:00 AM
Abstract :
We develop new fast algorithms for 2-D integer circular convolutions and 2-D number theoretic transforms (NTT). These new algorithms, which offer improved computational complexity, are constructed based on polynomial transforms over Zp; these transforms are Fourier-like transforms over Zp, which is the integral domain of polynomial forms over Zp[x]. Having defined such polynomial transforms over Zp we prove several necessary and sufficient conditions for their existence. We then apply the existence conditions to recognize two applicable polynomial transforms over Zp. One is for p equal to Mersenne numbers and the other for Fermat numbers. Based on these two transforms, referred to as Mersenne number polynomial transforms (MNPT) and Fermat number polynomial transforms (FNPT), we develop fast algorithms for 2-D integer circular convolutions, 2-D Mersenne number transforms, and 2-D Fermat number transforms. As compared to the conventional row-column computation of 2-D NTT for 2-D integer circular convolutions and 2-D NTT, the new algorithms give rise to reduced computational complexities by saving more than 25 or 42% in numbers of operations for multiplying 2 i, i⩾1; these percentages of savings also grow with the size of the 2-D integer circular convolutions or the 2-D NTT
Keywords :
computational complexity; convolution; number theory; polynomials; transforms; 2-D Fermat number transforms; 2-D Mersenne number transforms; 2-D integer circular convolutions; 2-D number theoretic transforms; Fermat number polynomial transforms; Fourier-like transforms; Mersenne number polynomial transforms; NTT; computational complexity; existence conditions; fast algorithms; finite rings; integral domain; necessary conditions; polynomial transforms; sufficient conditions; Computational complexity; Convolution; Convolutional codes; Digital signal processing; Fourier transforms; Image coding; Polynomials; Radio access networks; Signal processing algorithms; Sufficient conditions;
Journal_Title :
Signal Processing, IEEE Transactions on