• DocumentCode
    749908
  • Title

    On Analytic Properties of Entropy Rate

  • Author

    Schönhuth, Alexander

  • Author_Institution
    Sch. of Comput. Sci., Simon Fraser Univ., Burnaby, BC
  • Volume
    55
  • Issue
    5
  • fYear
    2009
  • fDate
    5/1/2009 12:00:00 AM
  • Firstpage
    2119
  • Lastpage
    2127
  • Abstract
    Entropy rate is a real valued functional on the space of discrete random sources for which it exists. However, it lacks existence proofs and/or closed formulas even for classes of random sources which have intuitive parameterizations. A good way to overcome this problem is to examine its analytic properties relative to some reasonable topology. A canonical choice of a topology is that of the norm of total variation as it immediately arises with the idea of a discrete random source as a probability measure on sequence space. It is shown that both upper and lower entropy rate, hence entropy rate itself if it exists, are Lipschitzian relative to this topology, which, by well known facts, is close to differentiability. An application of this theorem leads to a simple and elementary proof of the existence of entropy rate of random sources with finite evolution dimension. This class of sources encompasses arbitrary hidden Markov sources and quantum random walks.
  • Keywords
    entropy; hidden Markov models; random sequences; arbitrary hidden Markov sources; discrete random sources; entropy rate; finite evolution dimension; quantum random walks; sequence space; Entropy; Extraterrestrial measurements; Hidden Markov models; Information theory; Stochastic processes; Topology; Uncertainty; Analytic properties; discrete random source; entropy rate; evolution dimension; hidden Markov source; quantum random walk;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2009.2016015
  • Filename
    4839025