DocumentCode :
750082
Title :
Segmentation of document images
Author :
Taxt, T. ; Flynn, P.J. ; Jain, A.K.
Author_Institution :
Dept. of Comput. Sci., Michigan State Univ., East Lansing, MI, USA
Volume :
11
Issue :
12
fYear :
1989
Firstpage :
1322
Lastpage :
1329
Abstract :
Several methods for segmentation of document images (maps, drawings, etc.) are explored. The segmentation operation is posed as a statistical classification task with two pattern classes: print and background. A number of classification strategies are available. All require some prior information about the distribution of gray levels for the two classes. Training (either supervised or unsupervised) is employed to form these initial density estimates. Automatic updating of the class-conditional densities is performed within subregions in the image to adapt these global density estimates to the local image area. After local class-conditional densities have been obtained, each pixel is classified within the window using several techniques: a noncontextual Bayes classifier, Besag´s classifier, relaxation, Owen and Switzer´s classifier, and Haslett´s classifier. Four test images were processed. In two of these, the relaxation method performed best, and in the other two, the noncontextual method performed best. Automatic updating improved the results for both classifiers.<>
Keywords :
pattern recognition; picture processing; statistical analysis; Besag´s classifier; Haslett´s classifier; Owen and Switzer´s classifier; background; class-conditional densities; document image segmentation; drawings; gray level distribution; maps; noncontextual Bayes classifier; pattern recognition; picture processing; print; relaxation; statistical classification task; Councils; Data mining; Degradation; Digital images; Fading; Image databases; Image segmentation; Markov random fields; Storage automation; Testing;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/34.41371
Filename :
41371
Link To Document :
بازگشت