DocumentCode :
754136
Title :
On Z2k-Dual Binary Codes
Author :
Krotov, Denis S.
Author_Institution :
Sobolev Inst. of Math., Novosibirsk
Volume :
53
Issue :
4
fYear :
2007
fDate :
4/1/2007 12:00:00 AM
Firstpage :
1532
Lastpage :
1537
Abstract :
A new generalization of the Gray map is introduced. The new generalization Phi:Z2 kn rarr Z2 2k-1n is connected with the known generalized Gray map phi in the following way: if we take two dual linear Z2 k-codes and construct binary codes from them using the generalizations phi and Phi of the Gray map, then the weight enumerators of the binary codes obtained will satisfy the MacWilliams identity. The classes of Z2 k-linear Hadamard codes and co-Z2 k-linear extended 1-perfect codes are described, where co-Z2 k-linearity means that the code can be obtained from a linear Z2 k-code with the help of the new generalized Gray map
Keywords :
Gray codes; Hadamard codes; binary codes; linear codes; Gray map; MacWilliams identity; dual binary codes; linear Hadamard codes; Binary codes; Combinatorial mathematics; Conferences; Error correction codes; Parity check codes; Protection; Random processes; Signal processing; Streaming media; Video coding; $Z_{2^k}$-linearity; Gray map; Hadamard codes; MacWilliams identity; perfect codes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2007.892787
Filename :
4137890
Link To Document :
بازگشت