• DocumentCode
    754136
  • Title

    On Z2k-Dual Binary Codes

  • Author

    Krotov, Denis S.

  • Author_Institution
    Sobolev Inst. of Math., Novosibirsk
  • Volume
    53
  • Issue
    4
  • fYear
    2007
  • fDate
    4/1/2007 12:00:00 AM
  • Firstpage
    1532
  • Lastpage
    1537
  • Abstract
    A new generalization of the Gray map is introduced. The new generalization Phi:Z2 kn rarr Z2 2k-1n is connected with the known generalized Gray map phi in the following way: if we take two dual linear Z2 k-codes and construct binary codes from them using the generalizations phi and Phi of the Gray map, then the weight enumerators of the binary codes obtained will satisfy the MacWilliams identity. The classes of Z2 k-linear Hadamard codes and co-Z2 k-linear extended 1-perfect codes are described, where co-Z2 k-linearity means that the code can be obtained from a linear Z2 k-code with the help of the new generalized Gray map
  • Keywords
    Gray codes; Hadamard codes; binary codes; linear codes; Gray map; MacWilliams identity; dual binary codes; linear Hadamard codes; Binary codes; Combinatorial mathematics; Conferences; Error correction codes; Parity check codes; Protection; Random processes; Signal processing; Streaming media; Video coding; $Z_{2^k}$-linearity; Gray map; Hadamard codes; MacWilliams identity; perfect codes;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2007.892787
  • Filename
    4137890