Title :
Performance Analysis of Wireless Systems With Doubly Selective Rayleigh Fading
Author :
Wu, Jingxian ; Xiao, Chengshan
Author_Institution :
Dept. of Eng. Sci., Sonoma State Univ., Rohnert Park, CA
fDate :
3/1/2007 12:00:00 AM
Abstract :
Theoretical error performances of wireless communication systems suffering from both doubly selective (time varying and frequency selective) Rayleigh fading and sampler timing offset are analyzed in this paper. Single-input-single-output systems with doubly selective fading channels are equivalently represented as discrete-time single-input-multiple-output (SIMO) systems with correlated frequency-flat fading channels, with the correlation information being determined by the combined effects of sampler timing phase, maximum Doppler spread, and power delay profile of the physical fading. Based on the equivalent SIMO system representation, closed-form error-probability expressions are derived as tight lower bounds for linearly modulated systems with fractionally spaced equalizers. The information on the sampler timing offset and the statistical properties of the physical channel fading, along with the effects of the fractionally spaced equalizer, are incorporated in the error-probability expressions. Simulation results show that the new analytical results can accurately predict the error performances of maximum-likelihood sequence estimation and maximum a posteriori equalizers for practical wireless communication systems in a wide range of signal-to-noise ratio. Moreover, some interesting observations about receiver oversampling and system timing phase sensitivity are obtained based on the new analytical results
Keywords :
Rayleigh channels; equalisers; error statistics; maximum likelihood estimation; closed-form error-probability; correlated frequency-flat fading channels; correlation information; discrete-time single-input-multiple-output; doubly selective Rayleigh fading; maximum Doppler spread; maximum a posteriori equalizers; maximum-likelihood sequence estimation; power delay profile; receiver oversampling; sampler timing phase; signal-to-noise ratio; single-input-single-output systems; statistical properties; system timing phase sensitivity; wireless communication systems; Analytical models; Delay effects; Equalizers; Fading; Frequency; Performance analysis; Rayleigh channels; Time varying systems; Timing; Wireless communication; Doubly selective fading; error performance; fractionally spaced equalizer; power delay profile (PDP); sensitivity; timing phase;
Journal_Title :
Vehicular Technology, IEEE Transactions on
DOI :
10.1109/TVT.2007.891438