• DocumentCode
    755934
  • Title

    Evolving feature selection

  • Author

    Liu, Hongying ; Dougherty, Edward ; Dy, Jennifer G. ; Torkkola, K. ; Tuv, E. ; Peng, Hua ; Ding, Chibiao ; Long, F. ; Berens, M. ; Parsons, Lowell ; Zhao, Zhen ; Yu, Long ; Forman, G.

  • Author_Institution
    Arizona State Univ., AZ, USA
  • Volume
    20
  • Issue
    6
  • fYear
    2005
  • Firstpage
    64
  • Lastpage
    76
  • Abstract
    Data preprocessing is an indispensable step in effective data analysis. It prepares data for data mining and machine learning, which aim to turn data into business intelligence or knowledge. Feature selection is a preprocessing technique commonly used on high-dimensional data. Feature selection studies how to select a subset or list of attributes or variables that are used to construct models describing data. Its purposes include reducing dimensionality, removing irrelevant and redundant features, reducing the amount of data needed for learning, improving algorithms´ predictive accuracy, and increasing the constructed models´ comprehensibility. This article considers feature-selection overfitting with small-sample classifier design; feature selection for unlabeled data; variable selection using ensemble methods; minimum redundancy-maximum relevance feature selection; and biological relevance in feature selection for microarray data.
  • Keywords
    data analysis; feature extraction; biological relevance fostering; ensemble methods; feature-selection overfitting; microarray data; minimum redundancy-maximum relevance feature selection; small-sample classifier design; unlabeled data; variable selection; Accuracy; Biological system modeling; Data analysis; Data mining; Data preprocessing; Input variables; Learning systems; Machine learning; Prediction algorithms; Predictive models; bioinformatics; classification; clustering; data mining; feature selection; text mining;
  • fLanguage
    English
  • Journal_Title
    Intelligent Systems, IEEE
  • Publisher
    ieee
  • ISSN
    1541-1672
  • Type

    jour

  • DOI
    10.1109/MIS.2005.105
  • Filename
    1556517