DocumentCode :
758235
Title :
Effects of Cu/Al intermetallic compound (IMC) on copper wire and aluminum pad bondability
Author :
Kim, Hyoung-Joon ; Lee, Joo Yeon ; Paik, Kyung-Wook ; Koh, Kwang-Won ; Won, Jinhee ; Choe, Sihyun ; Lee, Jin ; Moon, Jung-Tak ; Park, Yong-Jin
Author_Institution :
Dept. of Mater. Sci. & Eng., Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea
Volume :
26
Issue :
2
fYear :
2003
fDate :
6/1/2003 12:00:00 AM
Firstpage :
367
Lastpage :
374
Abstract :
Copper wire bonding is an alternative interconnection technology that serves as a viable, and cost saving alternative to gold wire bonding. Its excellent mechanical and electrical characteristics attract the high-speed, power management devices and fine-pitch applications. Copper wire bonding can be a potentially alternative interconnection technology along with flip chip interconnection. However, the growth of Cu/Al intermetallic compound (IMC) at the copper wire and aluminum interface can induce a mechanical failure and increase a potential contact resistance. In this study, the copper wire bonded chip samples were annealed at the temperature range from 150°C to 300°C for 2 to 250 h, respectively. The formation of Cu/Al IMC was observed and the activation energy of Cu/Al IMC growth was obtained from an Arrhenius plot (ln (growth rate) versus 1/T). The obtained activation energy was 26Kcal/mol and the behavior of IMC growth was very sensitive to the annealing temperature. To investigate the effects of IMC formation on the copper wire bondability on Al pad, ball shear tests were performed on annealed samples. For as-bonded samples, ball shear strength ranged from 240-260gf, and ball shear strength changed as a function of annealing times. For annealed samples, fracture mode changed from adhesive failure at Cu/Al interface to IMC layer or Cu wire itself. The IMC growth and the diffusion rate of aluminum and copper were closely related to failure mode changes. Micro-XRD was performed on fractured pads and balls to identify the phases of IMC and their effects on the ball bonding strength. From XRD results, it was confirmed that the major IMC was γ-Cu9Al4 and it provided a strong bondability.
Keywords :
X-ray diffraction; aluminium; annealing; chemical interdiffusion; contact resistance; copper; lead bonding; shear strength; 150 to 300 degC; Arrhenius plot; Cu-Al; X-ray diffraction; activation energy; adhesive failure; aluminum pad; annealing; ball bonding strength; ball shear strength; contact resistance; copper wire bonding; diffusion; electrical characteristics; fracture mode; interconnection technology; intermetallic compound growth; mechanical characteristics; mechanical failure; Aluminum; Annealing; Bonding; Copper; Costs; Electric variables; Energy management; Gold; Intermetallic; Wire;
fLanguage :
English
Journal_Title :
Components and Packaging Technologies, IEEE Transactions on
Publisher :
ieee
ISSN :
1521-3331
Type :
jour
DOI :
10.1109/TCAPT.2003.815121
Filename :
1218233
Link To Document :
بازگشت