DocumentCode :
75826
Title :
Evolutive Improvement of Parameters in an Associative Classifier
Author :
Ramirez, Antonio ; Lopez, Itzama ; Villuendas, Yenny ; Yanez, Cornelio
Author_Institution :
Centro de Investig. en Comput. del, Inst. Politec. Nac., Mexico City, Mexico
Volume :
13
Issue :
5
fYear :
2015
fDate :
May-15
Firstpage :
1550
Lastpage :
1555
Abstract :
This paper presents an effective method to improve some of the parameters in an associative classifier, thus increasing its performance. This is accomplished using the simplicity and symmetry of the differential evolution metaheuristic. When modifying some parameters contained in the Gamma associative classifier, which is a novel associative model for pattern classification, this model have been found to be more efficient in the correct discrimination of objects; experimental results show that applying evolutionary algorithms models the desired efficiency and robustness of the classifier model is achieved. In this first approach, improving the Gamma associative classifier is achieved by applying the differential evolution algorithm.
Keywords :
evolutionary computation; pattern classification; Gamma associative classifier; differential evolution metaheuristic; evolutionary algorithm models; evolutive parameter improvement; pattern classification; Breast cancer; Computational modeling; Evolution (biology); Iris; Pattern classification; Pattern recognition; Robustness; Gamma associative classifier; differential evolution; metaheuristics; pattern classification;
fLanguage :
English
Journal_Title :
Latin America Transactions, IEEE (Revista IEEE America Latina)
Publisher :
ieee
ISSN :
1548-0992
Type :
jour
DOI :
10.1109/TLA.2015.7112014
Filename :
7112014
Link To Document :
بازگشت