Title :
Stochastic Automata-Based Estimators for Adaptively Compressing Files With Nonstationary Distributions
Author :
Rueda, Luis ; Oommen, B. John
Author_Institution :
Dept. of Comput. Sci., Univ. of Concepcion
Abstract :
This correspondence shows that learning automata techniques, which have been useful in developing weak estimators, can be applied to data compression applications in which the data distributions are nonstationary. The adaptive coding scheme utilizes stochastic learning- based weak estimation techniques to adaptively update the probabilities of the source symbols, and this is done without resorting to either maximum likelihood, Bayesian, or sliding-window methods. The authors have incorporated the estimator in the adaptive Fano coding scheme and in an adaptive entropy-based scheme that "resembles" the well-known arithmetic coding. The empirical results obtained for both of these adaptive methods are obtained on real-life files that possess a fair degree of nonstationarity. From these results, it can be seen that the proposed schemes compress nearly 10% more than their respective adaptive methods that use maximum-likelihood estimator-based estimates
Keywords :
adaptive codes; arithmetic codes; data compression; learning (artificial intelligence); learning automata; statistical distributions; stochastic automata; Bayesian method; adaptive Fano coding; adaptive data compression files; adaptive entropy scheme; arithmetic coding; learning automata technique; maximum likelihood method; nonstationary distribution; sliding-window method; stochastic automata-based estimator; stochastic learning; Adaptive coding; Arithmetic; Computer science; Data compression; Encoding; Learning automata; Maximum likelihood estimation; Predictive models; Stochastic processes; Technological innovation; Adaptive coding; Fano coding; nonstationary sources; online data compression; weak estimators;
Journal_Title :
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on
DOI :
10.1109/TSMCB.2006.872256