DocumentCode
759879
Title
Parameter estimation in Markov random field contextual models using geometric models of objects
Author
Nadabar, Sateesha G. ; Jain, Anil K.
Author_Institution
Innovision Corp., Madison, WI, USA
Volume
18
Issue
3
fYear
1996
fDate
3/1/1996 12:00:00 AM
Firstpage
326
Lastpage
329
Abstract
We present a new scheme for the estimation of Markov random field line process parameters which uses geometric CAD models of the objects in the scene. The models are used to generate synthetic images of the objects from random view points. The edge maps computed from the synthesized images are used as training samples to estimate the line process parameters using a least squares method. We show that this parameter estimation method is useful for detecting edges in range as well as intensity edges. The main contributions of the paper are: 1) use of CAD models to obtain true edge labels which are otherwise not available; and 2) use of canonical Markov random field representation to reduce the number of parameters
Keywords
CAD; Markov processes; computational geometry; computer graphics; edge detection; least squares approximations; parameter estimation; CAD models; Markov random field; clique potentials; contextual models; edge detection; edge maps; geometric models; least squares method; parameter estimation; random view points; range image; synthetic images; Context modeling; Frequency estimation; Image edge detection; Image generation; Labeling; Layout; Least squares methods; Markov random fields; Parameter estimation; Solid modeling;
fLanguage
English
Journal_Title
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher
ieee
ISSN
0162-8828
Type
jour
DOI
10.1109/34.485560
Filename
485560
Link To Document