• DocumentCode
    759879
  • Title

    Parameter estimation in Markov random field contextual models using geometric models of objects

  • Author

    Nadabar, Sateesha G. ; Jain, Anil K.

  • Author_Institution
    Innovision Corp., Madison, WI, USA
  • Volume
    18
  • Issue
    3
  • fYear
    1996
  • fDate
    3/1/1996 12:00:00 AM
  • Firstpage
    326
  • Lastpage
    329
  • Abstract
    We present a new scheme for the estimation of Markov random field line process parameters which uses geometric CAD models of the objects in the scene. The models are used to generate synthetic images of the objects from random view points. The edge maps computed from the synthesized images are used as training samples to estimate the line process parameters using a least squares method. We show that this parameter estimation method is useful for detecting edges in range as well as intensity edges. The main contributions of the paper are: 1) use of CAD models to obtain true edge labels which are otherwise not available; and 2) use of canonical Markov random field representation to reduce the number of parameters
  • Keywords
    CAD; Markov processes; computational geometry; computer graphics; edge detection; least squares approximations; parameter estimation; CAD models; Markov random field; clique potentials; contextual models; edge detection; edge maps; geometric models; least squares method; parameter estimation; random view points; range image; synthetic images; Context modeling; Frequency estimation; Image edge detection; Image generation; Labeling; Layout; Least squares methods; Markov random fields; Parameter estimation; Solid modeling;
  • fLanguage
    English
  • Journal_Title
    Pattern Analysis and Machine Intelligence, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0162-8828
  • Type

    jour

  • DOI
    10.1109/34.485560
  • Filename
    485560