DocumentCode :
760226
Title :
Perturbation bounds for root-clustering of linear systems in a specified second order subregion
Author :
Baker, W. ; Luo, J.S. ; Johnson, A.
Author_Institution :
ASPC Group, Amersfoort, Netherlands
Volume :
40
Issue :
3
fYear :
1995
fDate :
3/1/1995 12:00:00 AM
Firstpage :
473
Lastpage :
478
Abstract :
Sufficient bounds for structured and unstructured uncertainties for root-clustering in a specified second order subregion of the complex plane, for both continuous-time and discrete-time systems, are given using the generalized Lyapunov theory. Furthermore, for unstructured uncertainties, a still less conservative result is obtained by shifting the center or focus of the subregion along the real axis to the origin and by applying root-clustering to the “shifted eigenvalue” system matrix, which is obtained by shifting the eigenvalues of the system matrix correspondingly
Keywords :
Lyapunov methods; eigenvalues and eigenfunctions; perturbation techniques; root loci; generalized Lyapunov theory; linear systems; perturbation bounds; root-clustering; second-order subregion; shifted eigenvalue system matrix; structured uncertainties; unstructured uncertainties; Continuous time systems; Eigenvalues and eigenfunctions; Equations; Laboratories; Linear systems; Microcomputers; Process control; Sociotechnical systems; Symmetric matrices; Uncertainty;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.376060
Filename :
376060
Link To Document :
بازگشت